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IPT History @ University of Auckland

3

35+ PhDs, 10+ postdocs, 100+ Licensed Patent Families

Power Electronics and Wireless Power Transfer 
Applications in Industrial, Static and Dynamic EV Charging, 

Biomedical Systems, Appliance Electronics, Lighting

20001990 2010 2020

Daifuku Japan 
HID

IPT Technology 
Germany

Power by Proxi, 
HaloIPT

Qualcomm-Halo, 
WiTricity

Terminologies: Magnetic resonance, Highly resonant, IPT.
All use high Q coils & resonance for high efficiency at low coupling in the near field!30 Years Resonant WPT
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Fundamentals & Design goals

Fundamentals
Tuning & Operating Methodologies
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Fundamentals 
• Reliable & convenient
• Tolerant of water, chemicals, and dirt.  
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Tuning and Operating Methodologies

Power output when both sides are tuned to resonance: 
V1 and V2 are limited for safety
I1 and I2 increase power (but also losses)

Losses in any pad as function of Pad quality
Higher quality indicates a more ideal inductor

𝑄𝑄𝐿𝐿 = 𝜔𝜔𝜔𝜔
𝑟𝑟𝐿𝐿

Control Options
Primary side control only: Only VA1 varied
Secondary side control only: Only VA2 varied 
Primary & secondary side control: Both VA1 and VA2varied to achieve the lowest loss

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃𝑠𝑠𝑠𝑠𝑉𝑉2𝐼𝐼2 = 𝑘𝑘 𝑉𝑉𝑉𝑉1𝑉𝑉𝑉𝑉2



Industrial Track Systems
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Fixed Frequency Resonant Supplies

Input
Cdc C1

L1

Zload

A Ip

B

LbCb

LP=L1

UPF

Typical LCL Resonant Track Systems Construction in 1990’s
• Added transformer creates isolation and common mode rejection (Lp,C1, & L1 at resonance)
• Long track L1 constructed using series C’s and L’s to manage the voltages.
• Vp at the H-Bridge output, naturally produces a controlled current source in L1

• Zload represents the impedance reflected onto the primary “track” from one or more coupled 
secondaries under operation.



IPT Resonant Track Systems
• Eary current controlled resonant supply were at 20kHz

• Often around 20 independent secondaries
• System efficiency > 80% high under load
• k to each pickup ~ 0.01-0.03

• Often no primary core (QL-track ~ 200)

• Secondary magnetics has core and is tuned (QL-secondary ~ 550 )

• Secondaries move along track and regulate VA2

3∅ Input

Power
Supply track conductor inductance = L1

I1

Switched-
Mode
Controller

L2

DC
powerTuned

Pickup

Pickup
Inductance

Individual k very low < 0.05

Primary recessed in floor: flat pick-ups

Rail mounted systems: E-core



Aluminum Monorail

Pick-up Coil

Ferrite E 
Core

Track Wires

• Allows movement 
• Tolerant of misalignment
• Unaffected by the environment

Prototype Operation



Improving the Magnetic Design
Problem: There is flux cancellation in E-Pick-up

• Evaluate flux paths from the primary coils 

• Some of these cannot be measured because they cancelled by the return wire

ФB-A

Track 
Conductor A

(excited)

Track 
Conductor B
(not excited)

ФL2-A

ФlA

Track 
Conductor A

(excited)

Track 
Conductor B

(excited)

ФL2-A

ФlA

ФL2-B

ФlB



Pickup design: E to S Core
Minimise flux paths that do not couple through the secondary coil 

S-Pickup E-Pickup
Voc (rms) 35.7 V 20.1 V
Isc (rms) 4.4 A 4.0 A
Psu 158.5 VA 80.8 VA

S and E pickups composition:
• Core ~ same ferrite 
• Coil is identical



Pickup design: S Core 
More power but more difficult to use

S-pickup on ICPT track



Example Track Systems
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3i Innovation

Roadway Lighting

Tunnel (Wellington NZ)

Double left turn (Illinois USA)

Tunnel (Sydney Australia)



Amusement Rides
• Disney Imagineering project
• Single phase track
• Multiple Pickups
• Wide tolerance

1994 Disney Imagineering



Factory Automation
Daifuku: Materials Handling (Early 1990’s)



Electronic: Factory Automation
Daifuku: Clean Room Systems (Mid 1990s)



Automotive: Materials Handling
Conductix-Wampfler (IPT Technology) (Late 1990’s)



Automotive:
Wampfler: Rail Applications Japan Public Works Research Institute

Test Track for  new road pavements

• 1 Vehicle
• 90 kW power
• 165m track length
• Vehicle weight 22 tonne
• Speed 30 km/h

10kW Pickup



Sorting:

Wampfler: Rail Applications

• 4 x 1.5 kW Power (75 or 48Vdc)
• Track Length ~ 210 - 280 m

Paris (Carrefour), London, Italy (Turin)



AGVs and Robots
Require greater freedom of movement 
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Precision alignment required for power transfer
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Multi-phase Industrial Tracks 

24

• Multi phase tracks  - ferrite less primaries
• Parallel layout decoupling mutuals only possible for 2 phase
• Any M couples opposing voltages in nearby tracks
• Drives unwanted currents back into the common bridge (circulating currents)

• Solutions include moving track loops to minimise M’s, cancelling mutuals or balancing them
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Reference [8],[18]-[20],[71]-[72]
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HORIZONTAL FLUX CAPTURE

Uncompensated Power for Horizontal Coil
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VERTICAL  FLUX
VERTICAL FLUX CAPTURE

Uncompensated Power for Vertical Coil
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Reference [8],[18]-[20],[71]-[72]



Single coil Multi-coil

Multiphase Tracks & Pads
• Combined multi-coil

• Flatter power profile
• 25-50% more power

Reference [8],[18]-[20],[71]-[72]



Stationary EV Charging
Early systems
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IPT street Conductive charge street

Safe and Durable

Aesthetically pleasing

Easy to use

Autonomous, Connected, Electric and Wireless

Mobility Vision



EV1 Battery Charger 
Charging Paddle system



Autonomous Robotics

Gripper Arm

Camera

Laser

Sonar

Bumpers

ID 
Marker

IPT 
Power 
Supply

IPT 
Power 
Pad

Pressure 
Pad

Wireless Charging as required

ID marker identifies 
charger position

50W Chargers



200W Shopping Basket Chargers

Charging Mat in Walmart USA
IPT powered shopping baskets

Power pad sited under trolley

Charging Station



People Moving (Mid-late 1990s)

Whakarewarewa
Rotorua Charging Bay

IPT Technology (Conductix-Wampfler)

• 5 buses with trailer
• 3 x 10 batteries of 12 V 
• Charging: 7min /15-20 min
• Charging power: 20 kW

10x 3kW Pickups @ 14kHz



People moving (early 2000s)
IPT Technology (Conductix-Wampfler)

Genoa, Porto Antico

• 3 buses each with 56 x 6V Batteries
• Charging 60kW for 10 minutes/hour

30kW Pickup 20kHz



Automotive: 2000’s
IPT Technology: Charging- discontinuous power transfer
• Primary side control and Hydraulic levitation

– Communications system required
– Only application for 1 to 1 application

• 20% Duty Cycle
• 300/600V Output
• Nom. Distance to Ground: 30mm
• Tolerances: H/L +/-50mm; V +/-10mm
• IP 67 -20°C / +50°C
• 70 kg, 1025 x 875 x 61mm

Weil-am-Rhein

Primary Coils

Pickups

Energy Supply (Current)

Cooling System (Water)

IPT Technology: 60kw Charging station


[image: image1.jpg]







M

Genoa, Porto Antico

Supporting Frame 
for Pickup 

Lowering Mechanism 
for Pickup (customer)

30 mm (max)

M

Automotive: 2000’s

IPT Technology: Charging



Automotive: Late 2000’s – Greater Gaps Required

The EV Charging System

• Power Supply

• Ground Assembly (GA)

• Magnetic field

• Vehicle Assembly (VA)

• Data Transmission

• Controller

• Battery

• User Interface

• Multiple Ground Pads



Pad development
Non polarised Couplers
Polarised Couplers
Multi-coil Topologies
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Non-Polarised Couplers
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Reference [8],[21],[22]



Coupler Leakage & Shielding
Installation - EV chassis and field leakage considerations

Main coupling field

Leakage field 
of concern

Reference [8],[21],[22]
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Stationary Application
Power null (in all directions ~ 80% pad radius) 

• good leakage control 

• poor misalignment tolerance & challenging for dynamic

𝑃𝑃𝑠𝑠𝑠𝑠 = 𝑘𝑘2𝑉𝑉𝑉𝑉1

Reference [8]



Fe-less LC Reflector

C.T. RimReference [33]



Ferrite-less Circular Primaries

Reference [26], [33]

Anti-wound (reflection) coil 1/3 the turns ratio

Reflection coil ~30% larger has excellent leakage

Coupling factors typically 2/3rds require 2.3x VA

DR
= 650 mm

DR
= 750 mm

Matched DR
= 500 mm

CP Secondary offset: X=150mm, Z=150mm



Charger: 2kW single phase supply

Pick-up: 2-5kW Power Pad

220mm airgap

Vehicle 
controller

2kW IPT Charger

A Demonstration System at EVS24



Polarised Couplers
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Intra-pad flux

Pole face

Ferrite

Flux Pipe

Leakage

Flux pipe: 
• encourages pole separation
• flux path has greater height

Issues:
• Fields on both sides & ends
• Hard to control leakage

Polarised Designs: Solenoid

Front

Back

Flux 
out of 
end

Reference [8],[22]
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Solenoid aluminium shield creates large losses

I1 = 23A/coil at 20kHz
• QL without shielding is 260
• QL with shielding is 86 

Circular QL (~ 300 at 20kHz)

Reference [8],[22]



Equipotential surface

Coil a

Coil b

Ferrite

Φip = Φab+ ΦbaΦa

Φb

Winding direction

Sections of coils 
contributing to Φip 

Improving the Magnetic Design



Ferrite strips: 
• Reduce material and inductance

Coil winding:
• Creates a flux pipe (minimised winding length)
• Single sided flux paths with height ~ pole seperation /2

QL ~400 at 20kHz

Polarised DD

Winding 
direction

Flux path 
height hz

0  mT

3.5

Φ1a

Φlt

Φlb

ΦM

Coils

Ferrite

Shield

Flux linkage 
around return 

portions
x

z
Fl

Main coupling field

Leakage field 
of concern

Weak S-N leakage field

Reference [8],[22]
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Ferrite-less DD Primaries

Main coil (640 x 460)
28 ferrite blocks 

No ferrite
Reflection coil (760 x 520)

LPP X : 29.1
LPP Y : 13.16
LPP Z : 2.9
KVA 1 : 104.63 

LPP X : 16.96
LPP Y : 5.81
LPP Z : 7.26
KVA 1 : 256.72

Reference [53], [54]

LPP X : 15.04
LPP Y : 7.76
LPP Z : 1.56
KVA 1 : 195.76 

4 blocks ferrite 125x100
Reflection coil (760 x 520)

Anti-wound (reflection) coil 1/3 the turns ratio & ~30% larger
Ferrite-less coupling factors typically 2/3rds require 2.5 x VA
Partial ferrite coupling factors ~75% require ~1.9 x VA
Leakage can be lower!



Winding 
direction

Flux path 
height hz

Simple Coil Comparisons

DD on DDCircular on Circular

7kW zone 7kW zone

Charging Area 
Circular < 2 x Polarised

Transfer height ~d/2 Transfer height d/4 

For similar:  Pad Areas & Inductances
Driving VA & Frequency
Secondary VA

Leakage naturally constrained 
with external pole

Tolerance v.s. higher leakage 
due to auxiliary poles

7kW output at 125mm

Reference [8],[22]



Interoperability (7 kW)

DD secondary 
On Circular Primary

Circular Secondary 
On DD Primary

I1=23 A, 7kW zone I1=23 A, 7kW zone

𝑃𝑃𝑠𝑠𝑠𝑠 = 𝑘𝑘2𝑉𝑉𝑉𝑉1

Reference [8],[22]



Evolution of Systems

7kW charge system > 90% Efficiency

Developed with HaloIPT 2010
Rolls Royce Phantom 102Ex

Product ready with Qualcomm

11kW > 90% Efficiency
Courtesy of Qualcomm

Future Systems with WiTricity
Power demand shifting upwards



SAE J2954 Compliance
Light Duty
Future LD and HD status
HD Considerations
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SAE J2954 targets full Interoperability
• A test station is used for validation

- Universal Ground Assembly (UGA)
- Test station Vehicle Assemblies (VA) (WPT1-3, Z1-3)

• Classifications:
- Public GAs: Class I 
- Private GAs: Class II

• Product Testing:
- Class I GAs at all power and Z ranges with all test VAs
- Class II GAs up to rating & over specified Z range with relevant VAs
- Vehicle systems over their designed airgap on the UGA

• All systems tested:
- ∆X: ± 75mm, ∆Y: ± 100mm, Roll/Pitch: 2°, Yaw: 3°.
- Over typical battery range (DC 280-420V) on test VAs
- Must comply with EMF ICNIRP/Pacemaker leakage when powered
- Must meet EMC Limits (82.8 dBuA/m in 79-90kHz band)
- Must use communication sets (J29847-6), except proprietary VAs
- Must not heat specified foreign above 80°c in 60s

Reference [59 ]



System Efficiency Targets:
AC Mains to Battery – matched systems deployed > 90%

Product VAs 
- tested at full power must be ≥80% over all X,Y,Z range
- ≥85% when centred in the middle of the nominated Z range.
Class I (Public)
- Minimums at rated power of test VA

Class II (Private/Fleet …)
- Minimums at rated power of test VA

SAE J2954 Interoperability

Reference [59 ] 



Future Light & Heavy Duty Vehicle Status
• LD Future Power levels from 20 - 60kW planned for taxi etc.

• WPT4 22kW, WPT5 60kW
• Vehicle side magnetics are made small and designed for raised primary
• Flush mounted designs for public deployment

• HD under development 
• Focus on output power 20-500kW ideally with 90% efficiency
• Flush and buried mounted magnetics
• Often matched designs with vehicle systems twice size of LD
• Parking Zones (±100mm, ±100mm)
• Leakage limits same
• Safety in managed parking can use cameras and qualified personnel



WPT 4 & 5 Systems …
Cambridge & Warwick (50kW)

ORNL

Reference [50,51]



Ferrite and Wiring Considerations
Flux crowding (partial saturation) influenced by:

• Ferrite Grouping & chosen Spacing

• Wiring and exits 

Reference [64]

50 kW Prototype



FOD Considerations

• Surface flux using Ultrasonic or impedance measurement
• Detection objects directly on GA pad surface during charging
• Metallic Foreign Objects (MFO)

• Paper clips, Nails, Coins, Cigarette Packets

• Living Foreign Objects (LFO) - ultrasonics or capacitive
• Pets, Small Children

• Field levels for humans <15uT, small objects to avoid heating (mT)

Reference [61,62,63 ]



What are decoupled coils?
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Mutual decoupling
• Overlapped coil sees B in two opposing directions
• Overlap size & field strength determines the degree of mutual coupling

Ip1

Coil 2Coil 1
Overlapping Area

Induced EMF in Coil 2

Top View

Side View

Ip1

B1

B2

Ip1

Coil 2Coil 1
Overlapping Area

Induced EMF in Coil 2

Top View

Side View

Ip1

B1

B2



Rp1

Rp2

Ip1

kp1p2

Lp1

Mutual Decoupling
Minimizing mutual coupling between the primary coils

VEMF

Ip1

kp1p2

Ip1

t

Ip1

t

= 0

= 0

Ip1

t

𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐿𝐿𝑝𝑝𝑝 + 𝐿𝐿𝑝𝑝𝑝 ± 2𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐿𝐿𝑝𝑝𝑝 + 𝐿𝐿𝑝𝑝𝑝



Multi-Coil Primaries
Single sided combining non-polarized & polarized
• Increase local coupling
• Improve interoperability
• Enable higher power with lower leakage
• Better ferrite usage
• Increased system complexity
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DDQ or Bipolar Primary Driving Circuit

Chonqing University, China

Reference [32]



Leakage flux control of BPPs
Severe misalignment (250mm)
Both BP coils vs. powering only the best coupled coil
Using 1 BP coil shows lower primary VA with better power out and lower leakage



Secondary Control Needed (within limits) 

Both secondary & primary control = lower loss and lower leakage



Multicoil Surface GA
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References [22]-[25],[27], [32],  [49-56]

205
158

111

63

0

Tri-polar UoA.

3 phase 120° rotated DDs ORNL.

Field shaping increases efficiency & lowers leakage
Multicoil/multiphase exploits interoperability and improves ferrite use & leakage 
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XZ plane max = 14.32 µT
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Tested at rated power
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References [22]-[25],[27], [32],  [49-56]



Multi-Coil Primary: WPT2/Z2 VAs

 

Coil 1b = 76.5∠180 A 

XZ plane max = 9.30 µT 

Coil 1a = 2.5 A 

MCP-CP

 

Coil 1b = 2.5∠180 A 

Coil 1a = 61.85 A 

MCP-DDP

YZ plane max = 11.6 µT

References [22]-[25],[27], [32],  [49-56]



Tri-polar Pads
• Mutually decoupled coils
• Rotationally tolerant to all including polarised and circular
• Has capability to boost VA in added coil for high power
• Compatible will all other technologies
• Can be used to reduce flux leakage at offset by as much as 50% for identical power transfer

Coil 1 Coil 2

Coil 3
Coil 1 & 3 

overlapping 
area

Aluminium
Ferrite Front View

Top View

References [22]-[25],[27], [32],  [49-56]



Mutually decoupled primary pad

1/2/3 Phase Tripolar pad

Tripolar Pad

Non-polarised

Polarised

Ip

Ip1 Ip1

Ip1

Ip2

Ip3

References [22]-[25],[27], [32],  [49-56]



TPP primary to BPP and CP secondary with optimised primary currents at 
different air gaps and secondary sizes
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20 kW Topologies Evaluated
CP or TPP primaries to CP or TPP secondary

• Identical Cu, Fe, and Al 

• 680mm diameter pads (600mm coil diameter)

• 150mm air gap

• Designed for 20kW at 85kHz
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Each coil of the TPP is driven from an LCL tuned inverter
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References [22]-[25],[27], [32],  [49-56]



Effective Coupling Factor ( keff )
Multicoil Pads with Decoupled (independent) Windings

• 𝑘𝑘eff = ∑ 𝑆𝑆u
∑ 𝑉𝑉𝑉𝑉p

= 𝑆𝑆u1+ 𝑆𝑆u2+ 𝑆𝑆u3
𝑉𝑉𝑉𝑉p1+ 𝑉𝑉𝑉𝑉p2+ 𝑉𝑉𝑉𝑉p3

• 𝑃𝑃out = 𝑘𝑘eff ∑𝑉𝑉𝑉𝑉1 ∑𝑉𝑉𝑉𝑉2

References [22]-[25],[27], [32],  [49-56]



Impact on Leakage 

References [22]-[25],[27], [32],  [49-56]



Ratings of Electronics for 20 kW

Summary:
Leakage reduction of 43%

Component ratings each phase of TPP, against CP: 
TPP/phase: H-bridge & rectifiers ½ rating of CP, resonant components 1/3 of CP

References [22]-[25],[27], [32],  [49-56]



Multicoil Vehicle COUPLERS
• Provide wider misalignment tolerance
• Better transition for stationary to dynamic
• Reduced sensitivity to varying coupling
• Improved system efficiency
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Multi-coil DDQ  and Bipolar Secondaries

DDQ combines DD & Circular
Improves secondary lateral tolerance
• DD captures horizontal flux at centre
• Circular captures vertical flux at centre

DD Coils Q Coil

Ferrite

References [22]-[25]

BIPOLAR COILS

Bipolar:
Requires 25-30% less copper than DDQ
Power capture < 10% difference from DDQ
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References [22]-[25]

Ex: Combining current sourced secondaries 
when the primary current is controlled
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BIPOLAR COILS
Multi-coil Secondaries on Various Primaries

Power transfer zone is 3 x larger
Higher lateral parking tolerance possible

Minimises power pulsations in dynamic applications

Polarised PrimaryNon-Polarized Primary

DD Coils Q Coil

Ferrite



Bipolar Interoperability
Coupling factors for mismatched primary and secondary pads

Bipolar, circular and solenoid options of identical area



Intermediate Couplers
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Resonant Repeaters
Resonant repeaters applications

• Extending power transfer over a large gap using high quality ferrite-less coils

• Domino effect splitting can be effective for splitting and movement – e.g. robotics

• Co-planar magnetics series/parallel shows it only improves series tuned primaries by lowering the current from the 
inverter  

85
References [65]-[70]



Intermediates in use for Traffic lighting:
Road studs with flat pick-ups – using resonant intermediate power boost in late 90’s

Installation
• Saw cut (10mm x 60mm)
• Backfill epoxy/bitumim
• Glue stud into recess
• Active node/spacer placed beneath

resonant intermediate 



Coupler Improvements in Coupling?

Reference [70]

𝑘𝑘12 𝑘𝑘12
𝑘𝑘23

𝑘𝑘13
𝑘𝑘23
𝑘𝑘13

k’s with changing position of intermediate



Coupler Assessments of two coil versus 3 coil

Reference [70]

2: Matched Secondary1: UGA:WPT3 Z3 3: Improved volume VA



Future Road Systems
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MAINTAIN 25MPH
Green Light Timer: .08sec

Dynamic EV Charging
Stationary & Dynamic
Around town: little & often

Semi-Dynamic EV Charging

Static EV Charging

AVAILABLE PARKING
0.0 miles ahead.

WARNING SIGN 
Construction zone in 2 mi.

!

Wireless 
charging



Roadway Vision
Static, Semi-dynamic, Smart Cities (rail, bus…), Long haul

Taxi-lanes/High Capacity Highways

• Sequentially Energised Pads

• Independently controlled, can track at > 100km/h

• Automated vehicle recognition, billing …

Vision Challenges:

• Compatibility

• Robustness

• Longevity



Dynamic Options
• Track options

Reference [34]



Dynamic Options
• 3 phase always better 

• Linear lower cost but meander has higher tolerance and power

Reference [34]



Lumped or Track?

LPP X : 16.96
LPP Y : 5.81
LPP Z : 7.26
KVA 1 : 256.72

800 200 734
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Modified 2 phase track

Single phase lumped DD Pads

Multiphase track – 2  phase example

Multicoil Secondary

DD Secondary

Circular Secondary

Reference [57] Plus applications in References [27]-[32],[34]-[48],[57]-[58]



Track Roadway Systems
Example systems
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20-100kW
17 cm gap
Inductive strips sized for Bus

KAIST Various Generations
Polarised only track and secondary has power nulls

Is

Pick-up

Power supply rail

moving direction (x)

lateral displacement 
ferrite core

Reference [2],[9],[35].[36]

http://olev.kaist.ac.kr/en/index.php



Light Rail: Continuous 270kW power, buried cables replaces catenaries

Bombardier Dynamic IPT

Bus: Dynamic trials lowered pads at controlled height, Stationary lowered for 100-200kW

www.primove.bombardier.com

Reference [2]



IABG INTIS
• 200kW Backbone

• 30kHz double U core

• 30kW @ 10cm

Reference [37]



Nissan

Reference [38]



Lumped Roadway Systems
Example systems
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University of Tokyo

References [39,40]



ORNL

Power Pulses followed by Nulls
Overcome using two offset coils and ultra capacitors but reduces potential capture. 

Reference [43]



TUG Bulgaria (FP7 fast in Charge)

• 30kW system

• Primary has 4cm think cover

• Dynamic at 15-20km/hr

Reference [44]



CAS (China)
• (LCC)  = LCL 2.34kW power transfer

• Studying switch on and cross transfer of power

Reference [45]



SDSU
One inverter driving multiple DD Primaries to a DDQ Secondary

A closely coupled primary decoupler is used to shut off unused primaries 

• Sa used to vary reflected load to regulate Ip

References [46,47]



Politecnico di Torino
• FABRIC CWD: 50 Tx’s: 

• Each: 1.5m x 50cm, spaced 50cm.

• 630Vdc stabilised backbone

Reference [48]



Power 
Supply 
cabinet

Vehicle lane

IPT Track

Power 
Supply 
cabinet

Vehicle lane

Power 
Supply 
cabinet

Power 
Supply 
cabinet

IPT TrackIPT TrackIPT Track

PadPadPadPad Pad PadPad PadPad PadPad PadPad Pad PadPad

200m
100m

UoA Roadway

 Sequentially Energised Pads under the Vehicle
 Coupled power to each independently controlled pad
 No DC or mains under roadway

References [8],[27]-[31]



• Evaluation of various systems
• 10kW/vehicle system
• Energised only under vehicle
• 20/50kW systems under development

Single phase DD Primaries

Multicoil Bipolar Secondary

UoA Prototype: Slow moving Taxi-Rank System

60 kW
PFC

60 kW
3 phase parallel

21.25 kHz 
power
supply

Intermediate 
pickup 1

10 kW 85 
kHz inverter

LCL or G1

10 kW
biploar 
pickup

Grid
3 φ 

400V

Intermediate 
pickup n 

...

Boost/
buck

converter

10 kW 85 kHz G1 
inverter with 

integrated 
converter 

Energy
storage

Aluminium litz 
backbone

∞ pickup

Vehicle
magnetics

Electric 
vehicle

10 kW 85 
kHz inverter

LCL or G1

Road
magnetics



System Opeartion

• DDP primary (600mm x 775mm) 
• Gap between adjacent primary pads (200mm)
• BPP secondary (350mm x 700mm) 
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• Slow vehicle movement (~0.8m/s) speed synchronised
• If not phase synchronised energy transferred between base pads 

• If free resonance > set level in base pad then turn on.
• Turn off when Ibridge is low

Slow vehicle movement 5.5 kW, Voltage = 300, 
Output Current = 17.8 A

Inverter turn on at slow speeds



Qualcomm Halo (WiTricty) DEVC

• No DC or mains under road
• Sequentially Energised Multicoil in road
• 2 x DD 10kW pads (20kW) vehicle



100 m, 20 kW Dynamic Track



100m, 20kW Dynamic Track

Sequential Energisation along the track



In-Road Research Challenges

• Compatibility 
• traffic mixes (different heights)
• Road construction, (most not concrete and larger movement)
• Varying energy demands, 
• Flexible grid supply

• Robustness and reliability

• Impact of road construction



Conclusions

• Resonant WPT
• Imagined 1890s
• Rediscovered in 1970-80s
• Commercially practical mid-late 90s in niche markets

• Stationary Charging
• Single coil options accepted by OEMs for first application
• Multi-coil topologies promising for high power, wide tolerance
• Ferrite-less designs under investigation for robustness

• Moving applications
• Industrial track systems are well established, but transportation options being evaluated
• Greater freedom requires multi-coil designs on primary or secondary
• Vehicular systems require robust design considering LD and HD

115 of 48Grant Covic and Duleepa Thrimawithana, Department of Electrical, Computer, and Software Engineering (2022)

mailto:ga.covic@auckland.ac.nz
mailto:d.thrimawithana@auckland.ac.nz


DD-DD Ansys Stationary Charging Example
Objectives of matched pads analysis:
• Set the ferrite Al and copper regions 
• Set excitation to 25A 85kHz RMS
• Evaluate when pads aligned: L1, L2, M and k
• Use rectangle cut plans to evaluate

• B in the core 
• B Leakage field at 800mm
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Questions
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