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IPT History @ University of Auchland

Te Whare Wananga o Tamaki Makaurau

NEW ZEALAND

Power Electronics and Wireless Power Transfer
Applications in Industrial, Static and Dynamic EV Charging,

THE UNIVERSITY

OF AUCKLAND Biomedical Systems, Appliance Electronics, Lighting
Qualcomm-Halo,
Power by Proxi, WiTricity
IPT Technology HalolPT
Daifuku Japan ‘ Germany
HID
1990 2000 2010 2020

35+ PhDs, 10+ postdocs, 100+ Licensed Patent Families

Terminologies: Magnetic resonance, Highly resonant, IPT.
30 Years Resonant WPT All use high Q coils & resonance for high efficiency at low coupling in the near field!

Grant Covic and Duleepa Thrimawithana, Department of Electrical, Computer, and Software Engineering (2022)
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Fundamentals & Design goals

Fundamentals
Tuning & Operating Methodologies

References [2],[3],[71,[8],[9] Copyright UoA: Grant Covic and Duleepa Thrimawithana, Department of Electrical, Computer, and Software Engineering (2022) 4 of 115
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« Reliable & convenient
« Tolerant of water, chemicals, and dirt.

I‘\Ampére’s Law

H

< v

Faraday’s Law

Vol = LI*=kV1

su oc™ sc
12



ning an erating Methodologies

Power output when both sides are tuned to resonance: Pyt =Py VoI, = kVAVA,

V,and V, are limited for safety
I, and I, increase power (but also losses)

Losses in any pad as function of Pad quality

Higher quality indicates a more ideal inductor VApaq
WL Pioss = 0
QL — Lpad
rL

Control Options
Primary side control only: Only VA, varied
Secondary side control only: Only VA, varied
Primary & secondary side control: Both VA, and VA,varied to achieve the lowest loss



Industrial Track Systems

References [2],[3],[71,[8],[9] Copyright UoA: Grant Covic and Duleepa Thrimawithana, Department of Electrical, Computer, and Software Engineering (2022)
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Fixed Frequency Resonant Supplies

L1

Input UPF

= C1 Zload

Typical LCL Resonant Track Systems Construction in 1990’s

- Added transformer creates isolation and common mode rejection (L,,C; & L, at resonance)
- Long track L, constructed using series C’s and L’s to manage the voltages.

- V, at the H-Bridge output, naturally produces a controlled current source in L,

* Z1,aq Tepresents the impedance reflected onto the primary “track” from one or more coupled
secondaries under operation.



IPT Resonant Track Systems

Eary current controlled resonant supply were at 20kHz

« Often around 20 independent secondaries
« System efficiency > 80% high under load
* kto each pickup ~ 0.01-0.03

Often no primary core (Qp iacx ~ 200)

Secondary magnetics has core and is tuned (Qy secondary ~ 550 )

Secondaries move along track and regulate VA,

3 Input
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Individual k very low < 0.05

Power
Supply

— — —0
Switched- DC
T}lned Mode power
Pickup Controller
— — —0
Pickup

2 Inductance

track conductor inductance = L;

Rail mounted systems: E-core

‘11



R

&

Te Whare Wananga o Tamaki Makaurau

Pfﬂtﬂtype Operation TR

Aluminum Monoralil

N

Pick-up Coll

Ferrite E ___
Core

Track Wires

. Allows movement

«  Tolerant of misalignment
«  Unaffected by the environment



Improving the Magnetic Design

Problem: There is flux cancellation in E-Pick-up
Evaluate flux paths from the primary coils

Some of these cannot be measured because they cancelled by the return wire

ﬁ_’\fpm ™ (7 Do TN B

AA A A

CD[A CD[A CDZB

) O\ "N
(@)= o @/ 9

T'_F \j TWT‘
Track Track Track Track
Conductor A Conductor B Conductor A Conductor B

(excited) (not excited) (excited) (excited)
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Pickup design: E to S Core

Minimise flux paths that do not couple through the secondary coil

S-Pickup E-Pickup
S and E pickups composition: 1% 35.7V 90.1V
« Core ~ same ferrite oc (rms)
+ Coil is identical Lic ems) 44A 4.0A

P, 158.5 VA 80.8 VA
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Pickup design: S Core

More power but more difficult to use

Gl ApD

S-pickup on ICPT track




Example Track Systems

References [2],[3],[71,[8],[9] Copyright UoA: Grant Covic and Duleepa Thrimawithana, Department of Electrical, Computer, and Software Engineering (2022)
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Tunnel (Wellington NZ)

g _:-_:._ ! o

Double left turn (Illinois USA)



Amusement Rides

- Disney Imagineering project 1994 Disney Imagineering
- Single phase track =
e Multiple Pickups
- Wide tolerance
P NEnk
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Daifuku: Materials Handling (Early 1990’s)



Electronic: Factory Automation

Te Whare Wananga o Tamaki Makaurau

Daifuku: Clean Room Systems (Mid 1990s)



Automotive: Materials Handling RORARE

Te Whare Wananga o Tamaki Makaus
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Conductix-Wampfler (IPT Technology) (Late 1990’s)




Automotive;

Wampfler: Rail Applications

10kW Pickup

~—

AR
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Japan Public Works Research Institute
Test Track for new road pavements

* 1 Vehicle

* 90 KW power

* 165m track length

» Vehicle weight 22 tonne
» Speed 30 km/h
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Wampfler: Rail Applications Paris (Carrefour), London, Italy (Turin)

« 4x1.5 kW Power (75 or 48Vdc)
« Track Length ~ 210 - 280 m
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AGVs and Robots

Require greater freedom of movement

References [2],[3],[71,[8],[9] Copyright UoA: Grant Covic and Duleepa Thrimawithana, Department of Electrical, Computer, and Software Engineering (2022) 22 of 115



mailto:ga.covic@auckland.ac.nz
mailto:d.thrimawithana@auckland.ac.nz

AGV’s and Robots

Uncompensated Power [Su]

-150 -100 -50 0 50 100 150
Distance fromTrack Centre (mm)

Precision alignment required for power transfer
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Multi-phase Industrial Tracks
AUCKLAND

- Multi phase tracks - ferrite less primaries |
- Parallel layout decoupling mutuals only possible for 2 phase >
« Any M couples opposing voltages in nearby tracks L // T s e o o o

« Drives unwanted currents back into the common bridge (circulating currents)
 Solutions include moving track loops to minimise M’s, cancelling mutuals or balancing them

1 = Track A+
C2
T Track A-

AANS
= B E 1

2288
Track B+

T c2 Track B-

|
EI<) oo
7

Mutual inductance

S S 3 ¢t

2008

c2 Track C+
Track C-
AANAS

(o3 B o I o I o I o'

24
Reference [8],[18]-[201,[71]-[72]
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Multiphase tracks o EEE

—+—Three Phase Open Delta

= Single Phase
. ,Oalxn ..

//\/8/

~_|
]

A

-150 -100 -50 0 50 100 150
Distance from Track Centre

D

Reference [8],[18]-[201,[71]-[72]
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Single & MUIti'COiI PiCkUpS RS

800
700 Specified Power
600 -
500
400
300
200 A

Power (W)

0 O Vertical +
° Horizontal
-150 -120 -90 60 90 150
Pickup Displacement (mm) - gg:”llzontal

Uncompensated Power for Horizontal Coil

140
120
100

80

60
40
20
0,
-150 -120 -90 60 -30 0 30 60 9 120 150

HORIZONTAL FLUX CAPTURE Pickup Displacement (mm)
Uncompensated Power for Vertical Coil

140
120
100
80
60
40
20 1

L e L e B B e e e e L e e

VERTICAL FLUX CAPTURE 150 -130 -110 -90 70 50 -30 -10 10 30 50 70 90 110 130 150
Reference [8],[18]-[201,[71]-[72] Pickup Displacement (mm)



Multiphase Tracks & Pads

« Combined multi-coil
« Flatter power profile
* 25-50% more power

40

30

—400 =200 0 200 400

Offset (mm)
-------- 40mm Track —— 80mm Track - ----= 100mm Track

Reference [8],[18]-[201,[71]-[72]
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Stationary EV Charging

Early systems

References [2],[3],[71,[8],[9] Copyright UoA: Grant Covic and Duleepa Thrimawithana, Department of Electrical, Computer, and Software Engineering (2022) 28 of 115
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Autonomous, Connected, Electric and Wireless
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IPT street

Safe and Durable

Easy to use

Aesthetically pleasing




EV1 Battery Charger

Te Whare Wananga o Timaki Makaurau

Charging Paddle system SETeR TN
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50W Chargers

Gripper Arm

Camera B sonar

Laser Bumpers

Wireless Charging as required

ID marker identifies
charger position

Pad

= \ Pressure
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200W Shopping Basket Chargers

Power pad sited under trolley

ing Mat in Wal A |
Charging Mat in Walmart US IPT powered shopping baskets
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IPT Technology (Conductix-Wampfler)

Whakarewarewa
Rotorua Charging Bay

* 5 buses with trailer

* 3x10 batteries of 12V
 Charging: 7min /15-20 min
* Charging power: 20 kW

10x 3kW Pickups @ 14kHz



People moving (early 2000s)

IPT Technology (Conductix-Wampfler)

Genoa, Porto Antico

* 3 buses each with 56 x 6V Batteries
» Charging 60kW for 10 minutes/hour

=

- .. -
Jl#m e

30kW Pickup 20kHz
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Automotive: 2000’s
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IPT Technology: Charging- discontinuous power transfer

* Primary side control and Hydraulic levitation
— Communications system required

— Only application for 1 to 1 application Primary Coils

Pickups >

Energy Supply (Current) ?

Cooling System (Water) ;

IPT Technology: 60kw Charging station
» 20% Duty Cycle

 300/600V Output

* Nom. Distance to Ground: 30mm

* Tolerances: H/L +/-50mm; V +/-10mm
«JP 67 -20°C/+50°C

» 70 kg, 1025 x 875 X 61mm




[image: image1.jpg]
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Genoa, Porto Antico

Lowering Mechanism
for Pickup (customer)

Supporting Frame
for Pickup \ ( :)

30 mm (max)
TR Y

IPT Technology: Charging



Automotive: Late 2000’s - Greater Gaps Required

Te Whare Wananga o Tamaki Makaurau

The EV Charging System

« Power Supply

» Ground Assembly (GA)
« Magnetic field

« Vehicle Assembly (VA)
- Data Transmission

« Controller

« Battery

« User Interface

« Multiple Ground Pads
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Pad development

Non polarised Couplers
Polarised Couplers
Multi-coil Topologies

References [2],[3],[71,[8],[9] Copyright UoA: Grant Covic and Duleepa Thrimawithana, Department of Electrical, Computer, and Software Engineering (2022) 38 of 115
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Non-Polarised Couplers

References [2],[3],[71,[8],[9] Copyright UoA: Grant Covic and Duleepa Thrimawithana, Department of Electrical, Computer, and Software Engineering (2022) 39 of 115
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Circular Non-polarized

@< Plastic Cover
_—

(Litz Wire)

¢ Coil Former
\—/
%@Q <«—— Ferrites
Ring
@ <« Aluminium

Backing Plate

Reference [8],[21],[22]

Circular Q; (~ 300 at 20kHz)

N

o O O

H U D

o O O 3 o O O

Flux density (uT)
O O © O

BN W

-400 -200 0 200 400
Position along contour (mm)

THE UNIVERSITY OF

AUCKLAND
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NEW ZEALAND




Coupler Leakage & Shielding

Installation - EV chassis and field leakage considerations

Main coupling field
B, oo Chassis

e Flux

= ke U ontainment

S e
LEux ‘ ;\\w\w\““l‘ » _ zone
exiting/ gttt Leakage field
TRy L y ¢ ] 1!
entering %+, , ., ofconcern

IR

Reference [8],[21],[22]

R
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Stationary Application

Power null (in all directions ~ 80% pad radius)

» good leakage control

« poor misalignment tolerance & challenging for dynamic

Reference [8]

/umww
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Fe-less LC Reflector

Fig. 9. A prototype fabrication of MFS using the LC-resonant coil.

Fig. 10. A prototype fabrication of MFS using the combination of the
conductive plate and LC-resonant coil.

Reference [33] C.T. Rim

LC-resonant coil

y
Z-axis
(a) MFS utilizing the LC-resonant coil.
R, Li-M L,»-M
o — 0 —1—00—|
I I
M R
O L

(b) Simplified equivalent electric circuit.
Fig. 4 MFS utilizing the LC-resonant coil and its equivalent electric
cireuit.

|Bi|+|B,]. capacitive i
T |B,| from Tx-cotl

|B,| from LC-coil
/.u— '--..,\

dy

f I

LC-col Tx-coil
Fig. 5. Magnetic field density profile with MFS utihzing LC-
resonant coil.
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Ferrite-less Circular Primaries
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CP Secondary offset: X=150mm, Z=150mm
Mgl e D
| [yt
233E-06
2.00E-06
I L67E-06
1.33E-06

1.00E-06

B.67E-07
333E-07
D.00E+H0

Mazximum; 3.01E-06
Minimum: 1.26E-07

Matched Dy = 500 mm

Magnetic Flx Density(RMS)
Contour Plat : T

3.00E-06
I 2.07E-0¢
2.33E-06
2.00E-06
I 1.67E-06
133E-06

1.00E-06

6.6TE-07
333E-07
0.00E+00

Maximum: 3 01E-06
Mininmm: 1 126E-07

Anti-wound (reflection) coil 1/3 the turns ratio

Magnetic Flux Densiry(RMS)
Contour Plot: T

Reflection coil ~30% larger has excellent leakage | e
Coupling factors typically 2/3rds require 2.3x VA |

1.00E-08

6.67E-07
3.33E-07
Q.00E+00

Maximum: 3.01E-04
Mininmrm: 1.26E-07

Reference [26], [33]
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A Demonstration System at EVS24

2KW IPT Charger

Vehicle
controller

Charger: 2ZkW single phase supply 220mm airgap
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Polarised Couplers

Reference [8],[22] Copyright UoA: Grant Covic and Duleepa Thrimawithana, Department of Electrical, Computer, and Software Engineering (2022) 46 of 115
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Intra-pad flux

Leakage

Flux pipe:
« encourages pole separation
« flux path has greater height
Issues:
« Fields on both sides & ends
- Hard to control leakage

Reference [8],[22]



Circular vs. Solenoid Coupler

Te Whare Wananga o Tamaki Makaurau
NEW ZEALAND

Flux path height, f(Pd/4)\ / / / ' /FJJax path helght f(Pl/Z) \ \ \

700 700

600 P — YN
- b —_ oUu
= (- |
2 500 = 500
g 400 g 400
< c
(] 300 9] 300
© o |
35 200 x 200
= 100 o 100 |

10U 11UV

0 0
-400 -200 0 200 400 -400 -200 0 200 400
Position along contour (mm) Position along contour (mm)

Circular Q, (~ 300 at 20kHz)

Solenoid aluminium shield creates large losses

= 23A/coil at 20kHz
« @, without shielding is 260
« Q, with shielding is 86
Reference [8],[22]




Improving the Magnetic Design

e —————

e
=
S - L
. = 7
S
~. -

Sections of coils
contributing to &;,

Equipotential surface



Polarised DD

_Flux path
\ height h, |35
Winding
direction
|
0 mT

Ferrite strips:
* Reduce material and inductance

Coil winding:
* Creates a flux pipe (minimised winding length)
» Single sided flux paths with height ~ pole seperation /2

Q, ~400 at 20kHz

Reference [8],[22]
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Main coupling field

Psu (VA)

o
7

Shield
/v’wrwy'i’ LI
\'i"‘ﬁ il

JIRRINE
ERshiRAI

i
\

Leakage field
of concern

Flux linkage
around return
portions

2500

I~ m\\\ ................. DD (x) ——--DD (y)
2000 S

\.
1500 e
N z
1000 = y
~. -
500 S
0 T T T T L 1
0 50 100 150 200 250 300

Offset in either x or y axes (mm)

Performance with lateral offset
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(c) Reduced ferrite DD

i LPP X : 16.96 LPP X : 15.04
ig?’%g% LPPY:5.81 LPPY:7.76
LPPZ:2.9 LPPZ:7.26 LPPZ:1.56
KVA 1 :104.63 KVA 1: 256.72 KVA 1:195.76
Main coil (640 x 460) No ferrite 4 blOCKS ferri.te 125x100
28 ferrite blocks Reflection coil (760 x 520) Reflection coil (760 x 520)

Anti-wound (reflection) coil 1/3 the turns ratio & ~30% larger
Ferrite-less coupling factors typically 2/3rds require 2.5 x VA

Partial ferrite coupling factors ~75% require ~1.9 x VA

Leakage can be lower!
Reference [53], [54]



S' IC'IC i For similar:  Pad Areas & Induct &
imple Coil Comparisons ~ rorsmiar  patsress s maucances

Secondary VA

Transfer height d/4

“.IIIIIIIIIIIIIIIIIII@IHIIIli imum'—
||||||I||||||i|||i\i_||\||||_

400

7kW output at 125mm
3
£ Charging Area
100 Circular < 2 x Polarised
-200 -200
-300 -300
_4%00 -300 -200 -100 ; (D : 100 200 300 400 'm_gng 3000 22000 100 ] 100 200 300 400
x{mm dx(mm)
Le_akage naturally constrained Tolerance v.s. higher leakage
with external pole due to auxiliary poles

Reference [8],[22]



Interoperability (7 kW)

Reference [8],[22]

dy(mm)

30001

20004 ¢

Psu (VA)

10004

0
400
200

400

0 200

-200

Psu = kZVAl

-200
dy (mm)  -400 -400 gy (mm)

400 300 200 100 0 100 200 300 400
dx(mm)

4000
30004

2000}

Psu (VA)

10004

0
400
200 400

0 200

-200

-200
dy (mm)  -400 -400 gy (mm)

400

300

200

100

0

dy(rmrm)

-100

-200

-300

-400
-00  -300 200 -100 0 00 200 300 400

dx(mm)
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Developed with HaloIPT 2010
Rolls Royce Phantom 102Ex

<
. Y L

_:'.";r;vers o pare ;,,v;s@; base Bt 16 inifate Skoing Future Systems with WiTricity
» P-3 e 9 i pre - .

Courtesy of Qualcomm Power demand shifting upwards

11kW > 90% Efficiency
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SAE J2954 Compliance

light Duty
Future LD and HD status
HD Considerations

References as noted Copyright UoA: Grant Covic and Duleepa Thrimawithana, Department of Electrical, Computer, and Software Engineering (2022) 55 0f 115
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SAE J2954 targets full Interoperability

A test station is used for validation
- Universal Ground Assembly (UGA)
- Test station Vehicle Assemblies (VA) (WPT1-3, Z1-3)

« C(Classifications:
- Public GAs: Class 1
- Private GAs: Class II
* Product Testing:

- Class I GAs at all power and Z ranges with all test VAs
- Class II GAs up to rating & over specified Z range with relevant VAs
- Vehicle systems over their designed airgap on the UGA

All systems tested:
- AX: £ 75mm, AY: £ 100mm, Roll/Pitch: 2°, Yaw: 3°.
- Over typical battery range (DC 280-420V) on test VAs
- Must comply with EMF ICNIRP/Pacemaker leakage when powered
- Must meet EMC Limits (82.8 dBuA/m in 79-90kHz band)
- Must use communication sets (J29847-6), except proprietary VAs

- Must not heat specified foreign above 80°c in 60s
Reference [59 ]



SAE J2954 Interoperability

NEW ZEALAND

System Efficiency Targets:
AC Mains to Battery — matched systems deployed > 90%

Product VAs

- tested at full power must be >80% over all X,Y,Z range

- >85% when centred in the middle of the nominated Z range.
Class I (Public)

- Minimums at rated power of test VA

WPT Class At Centered In Alignment

of Test VA Position Tolerance Area
WPT1 80% 75%
WPT2 82% 77%
WPT3 85% 80%

Class II (Private/Fleet ...)
- Minimums at rated power of test VA

At Centered Position and
WPT Class Difference Over Alignment
of Test VA Tolerance Area
Same Power Class 80%
One Power Class Difference 77%
Two Power Class Difference 75%

Reference [59 ]



Future Light & Heavy Duty Vehicle Status

« LD Future Power levels from 20 - 60kW planned for taxi etc.
« WPT4 22kW, WPT5 60kW
« Vehicle side magnetics are made small and designed for raised primary
« Flush mounted designs for public deployment

« HD under development
« Focus on output power 20-500kW ideally with 90% efficiency
* Flush and buried mounted magnetics
« Often matched designs with vehicle systems twice size of LD
« Parking Zones (£100mm, £100mm)
» Leakage limits same
« Safety in managed parking can use cameras and qualified personnel
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ORNL Fig. 4. Photo of constructed full-size WPT pads

Proposed receiver
ferrite shield

Receiver

ferrite core
I

Backplate 1m=1m=0.7mm Q Prism
shield _ Al shield O Pi-gm

v
0})DSCd transmitter

Transmitter ;
ferrite shield

ferrite core

(@ R . .
RecaE i {a) Backplate only shield (b) SAE Al Shield
. Shle‘d : 0.1m=3 8mm 1m=1m=0 Tmm 0.1m>3.8mm
i Ohseryauon Femite Al shisld Ferrite
o —
| —@ (0 " Proposed Rx
.x limit e magneltic shield
B i 0 g :
e ferrite shield
®) (c) Proposed Rx Magnetic (d) Proposed Tx-Rx Magnetic
Fig. 8. (a) Proposed magnetic shueld using the ferrite bars and (b) resulting Shield Shield

peak flux density distribution on the YZ plane showing that the EMF
emissions have been reduced below the ICNIRP lumt.

Reference [50,51]



Ferrite and Wiring Considerations

Flux crowding (partial saturation) influenced by:
« Ferrite Grouping & chosen Spacing

« Wiring and exits

50 KW Prototype
> = - R e
Primary & Secondary e - 1100%1 100 mm Al Shield
Electronics ” = “ (VA Pad Anached Undemeath)

-

".-"-lﬂ-v'_"-u -

Reference [64]
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(a) by
Fig. 5. (a) Mkl and (b) Mk2 50 kW GA prototype FEA |B| contour plots.

{1‘!}[

& Wahtd o

Fig 9. (a) Top left region of Mkl prototype FEA |B| contour plot. (b)
Closeup of red outlined region with overlaid B vector plot.

iy {a) (b)
Fig. 12. (a) Top and side view of 50 kW Mk2 GA when coil exits through
the back_ (b) Coil exits through the front. B vector plots shown
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 Surface flux using Ultrasonic or impedance measurement
« Detection objects directly on GA pad surface during charging
» Metallic Foreign Objects (MFO)
- Paper clips, Nails, Coins, Cigarette Packets

« Living Foreign Objects (LFO) - ultrasonics or capacitive
e Pets, Small Children

 Field levels for humans <15uT, small objects to avoid heating (mT)

— egion of Interest
—=ag ||

- | r ' = v —— o Regei il ferri
e Flux ) A e T eceiver coil, ferrite,
E Ija\( g = - = : ; and shielding {
! l - = = ¢ \ |
Ao L & ) / : — \ L <
- v 1
el Iy

Foreign object

‘YR Channel 2 SENIS 3DACMT-1 Flux Probe

Shielding
Transmitter coil

Detection coils (partial)

Fig. 9. A detection coil set in a WPT system.

1 Flux Probe Channels

Reference [61,62,63 ]
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What are decoupled coils?

References [22]-[25] Copyright UoA: Grant Covic and Duleepa Thrimawithana, Department of Electrical, Computer, and Software Engineering (2022) 62 of 115
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- Overlapped coil sees B in two opposing directions
« Overlap size & field strength determines the degree of mutual coupling

Overlapping Area [Top View ]
Coil 1 | Coil 2
|




Mutual Decoupling

Minimizing mutual coupling between the primary coils

kp1p2 =0

VEMF =0

Lytotar = Lp1 + Lpz £ 2Mp1p2 = Lyg + Ly;




References as no

Multi-Coil Primaries

Single sided combining non-polarized & polarized

ncrease local coupling
mprove interoperability

Enable higher power with lower leakage
Better ferrite usage
Increased system complexity

ted

Copyright UoA: Grant Covic and Duleepa Thrimawithana, Department of Electrical, Computer, and Software Engineering (2022)
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DDQ or Bipolar Primary Driving Circuit

LI'.I ol

Fafed T AT
f

a1l j—

— I, L. Cpz -

T
g T ]

Fig. 5 multiple legs inverter with LCC topology

Driver signals in Multiple legs inverter

Muster
upper

Muaster
lower

Excited a
apyper N (l:ﬂ

Exciteal
lower
1]

lole =] TS
apper g |

Lille
lower

13576 13580 L3584 13588 ® le-2
©time (s)

Fig. 6 Drover signals for multiple legs inverter

Reference [32]

Fig. 2 DDQ coupler

Chonging University, China

R
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—=—D0DQ-DD

—e— DD-DD
£ _m

" xh\\\

;
E 07 \
._5
S an 4
Sn
0 .

fIJ EID 4"U E:D 311.1 IEKJ IEU I:iU II;U
Lateral misalignment i

{a) Comparison with the mutual inductance vanation between DDQ to DD

coils and DD to DD coils

(Sample A-primary coil DDQ, secondary coi1l DD,
Sample B: primary coil DD, secondary coil DD}

—e—DDQ-rectangular
70 —a— rectangular-rectangular

bl —

[
=

Mutual inductance.wH
e E
= =
1

/

10 .

T T T T T T T
0 20 a0 60 30 100 120 140 16d
Lateral misalignment, v

(b) Comparison with the mutual inductance variation between DDQ to
rectangular coils and rectangular to rectangular coils
(Sample C: Primary coil DDQ. secondary coil rectangular,
Sample D: primary coil rectangular, secondary coil rectangular)
Fig. 3 Mutual inductance vanation with different couplers and lateral
misalignment
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Leakage flux control of BPPs
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Severe misalignment (250mm)
Both BP coils vs. powering only the best coupled coil
Using 1 BP coil shows lower primary VA with better power out and lower leakage

TABLE I
SIMULATED LEAKAGE FLUX ALONG X AXIS AT 800 mm FOR A FIXED
Iy = 27.69 A AS ()5 VARIES AT THE MOST MISALIGNED POSITION OF

Pri ) (250,100 MM.
Flux Probe rmary

IPT PH.dS Tnverter

51 =205 kVA Sa =102 KVA
XLN P Xiniaa Poia
QE Teoit (A) ;].h.xli c:.rli LN, 1a2 o:JrciE
(T W) (pT) (W)
0 2.44 28.17 0 14.96 0
S, 1 3.45 28.17 166 15.49 239
W ot 2 545 | 2819 332 15.88 479
- " i 3 7.72 28.23 498 16.31 719
4 10.07 28.28 664 16.76 959
Y. 5 12.45 28.35 829 17.22 1198
= p 6 14.85 28.42 995 17.70 1438
7 17.26 28.51 1061 18.17 1678

. - - . .
Fig. 7. A laboratory IPT system with a BPP primary and DDP secondary 5 19.68 Et_"h} 1327 15.64 1917
misaligned. 9 22.11 28.73 1493 19.11 2157
10 24.53 28.86 1658 19.58 2396




Secondary Control Needed (within limits)

Both secondary & primary control = lower loss and low

er leakage
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MEASURED VALUES TO OBRTAIN 1 kW ENI)E]’[—IHATI(JN {5 = SERIES, P = PARALLEL TUNING).

Load

R I Icuil Vour Lot Foue Fin o) -1{-'.?‘:,l?,T[L Q-} P-f::['}i Yin12,m Pi{:ﬂ‘r’
@ W v W W) (W) (uT) (5 @T) (M)
40 8 27.69 1578  63.82 1578 1007.1 1066.3 C 9d4.44 2063 6.3 33.75 w
81 8 38.69 11.01 90.7  11.01 098.6 1090 91.62 4127 33 2223 .68 176.1
QP 38.01 36.18 29.4 1118 9095 10943 9133 3T 33 26.53 4.09 244.5
122 p 3215 4327 1094 916 10021 10732 93.75 3248 49 30.79 4.52 221.2
1662 P 28 4965 1259 7.94 9996 10GB.4 B350 2989 6.5 33.46 W

All values in this table are measured

\V
LEAKAGE FLUX FOR A MISALIGNED BPP-DDP S5YSTEM ‘\’-’IT

FERATION FOR 1 kW OUTPUT, (8 = SERIES, P = PARALLEL TUNING).

I (A) Ly (A) XN 1a2 PJ:PX YN, 1a2 Pi{ﬂf Pm:t
(pT) () uT) (o) (W)
Simulation Resulis
401 § 21.29 15.78 15.89 62.93 3.23 309.6 1000
6Op 21.7T8 H2.48 15.79 63.33 3.20 304.0 1000
Practical Validation
40 8 22.44 15.41 14.94 66,93 2.49 401.6 904
E0P 24.92 H50.42 16.97 58.9 2.535 3094.5 902




Multicoil Surface GA

A2

Rectifier
into
cantroller®
i v into load
{:} 2Cm . ‘2 o
L 1 i T 2Ch. hlba *Contoller i a
| Ih Lunf2 T* T, boost controller fora
primay ! LGy Inl _x CP VA, Current
“"’“dg‘ﬁ J.F.uy-’?._ i 2G4 Doubler for DDP
.............. H VA
b side only exists for ['thl.-'lf‘ml
GA

References [22]-[25],[27], [32], [49-56]

Field shaping increases efficiency & lowers leakage

Magnetic Flux
Density (uT)

300
l 252

205

158
111
63
0

THE UNIVERSITY OF
ND

fe Whare Wananga o Timaki Makaui
NEW ZEALAND

3 phase 120° rotated DDs ORNL.

Multicoil/multiphase exploits interoperability and improves ferrite use & leakage



Example UGA @ WPT2/Z2 VAs

2 M
AN )

- A1 X<—Tv

©)
References [22]-[25],[27], [32], [49-56]

Tested at rated power
Max offsets

HamedExpr

1. 4322605
1. 3419605
1, 2516E-85
1. 1613685

1.0709E-85
9. BBE1E-0E
8, 9029E-26

7. 3996605
[ romse
6. 1991E-08

5.2898E-86
4, 3865E-G6

3. 4833E-08
2. 5800E-O8
1.6767E-05
7, 734BE-A7

R
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UGA-CP

XZ plane max = 14.32 puT

UGA-DDP

', 999BE-05
3. 9B9DE-DE
2. 9385E-0E
1. 9879E-05
&, 7735E-07

HamedExpr

1. 6336E-05
1. 5385E-05
1. 4275E-85
1, 3244E-B5
1. 2214E-05
1.1183E-05
1.0152E-85

9, 1249E-05
B s
7.08B7E-0E

6.0382E-05

XZ plane max = 16.33 uT




Multi-Coil Primary: WPT2/Z2 VAs

= | Pimary

T [H=bridge

References [22]-[25],[27], [32], [49-56]

Brns

9.30536-26
8.69926-25
5.09326-25
7.48716-25
6.8610E-25
6.2749€ -6
5.668%E-26
5.0628E-06
4,4567E-25
3.8507E-25
3. 2448625
2.6385E-25
2.0324-06
1.42648-25
5. 2028827
2. 1821627

Coil 1b =76.52180 A

MCP-CP

XZ plane max =9.30 pT

Coil 1a =2.5A

MCP-DDP

NamedExpr

1.1629E-05
1.08%0E-25
1.0151E-25
9.4123E-86
8.6733E-26
7. 9343E-28
7.13536-26
6.4583E-26
5. 7173688
4. 9783E-26
4. 2393626
3.5002E-28
2.7612E-28
2.0222E-06
1.2832E-08
5. 4422627

Coil 1b =2.52180 A

Coil 1a =61.85 A

YZ plane max = 11.6 uT

THE UNIVERSITY OF

Gl ApD

NEW ZEALAND
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« Mutually decoupled coils

« Rotationally tolerant to all including polarised and circular

» Has capability to boost VA in added coil for high power

« Compatible will all other technologies

« Can be used to reduce flux leakage at offset by as much as 50% for identical power transfer

Coil 3 Top View
Coil 1 &3
overlapping
area
Coil 1 Coil 2
Ferrite—_ .
Aluminium Front View

References [22]-[25],[27], [32], [49-56]



1/2/3 Phase Tripolar pad

Mutually decoupled primary pad

Polarised

References [22]-[25],[27], [32], [49-56] Tripolar Pad



Tripolar Pad Pri 5
THE UNIVERSITY OF
ripolar Pad Primary

NEW ZEALAND

0.4 . 04 0.4 i
: s /200 = /200 & /200
Bipolar N / £ ST E | - 6{{5
secondary o 0 & o0 0 & o S '
=200 / g, 200 N 200 / N 0.40
Xdig, 0 200 2005 Xdjg, 0 200 2005 Xdjg, O 200 200 0.35
P- (m A P- (m A P. (m A :
--0.30
Z Gap: 110mm 150mm 180mm 025
--0.20
_ 0.4 ; 0.4 0.4 - 0.15
Circular 5 M’ / 2OQ§ 5 5 : 20%\ 0.10
secondary ol 'l/ 0 & o= / ' o - & 0.05
2000 5 g 200 - W g 200 W S 0.00
Xdigy O 200" 20035 Xdign O 200 2005 Xdig, O 200 200
P (mm A P (mm) A P (mm) A
Z Gap: 110mm 150mm 180mm

TPP primary to BPP and CP secondary with optimised primary currents at
different air gaps and secondary sizes

Primary: TPP - 670mm diameter pads (coil 600mm), Sec: CP - 450mm x 450mm, BPP - 356mm x 576mm

References [22]-[25],[27], [32], [49-56]



20 kW Topologies Evaluated

CP or TPP primaries to CP or TPP secondary
« Identical Cu, Fe, and Al
« 680mm diameter pads (600mm coil diameter)

« 150mm air gap

THE UNIVERSITY OF

SHECHRND

NEW ZEALAND

. CP-CP CP-TPP TPP-TPP
« Designed for 20kW at 85kHz
Lp: Y,
A Ll .
Lpl \ I
Vo I ® Cor \ L=
My
A ) )/ \ Ve2 I:”
< . EE
VPZ IiHZQD sz:* — CDLHE‘P: — ch.:.":.': e Ry
J':_\ S
s
A 23
Vp3 IinSQD CP3: Giuz‘n_:,:—

References [22]-[25],[27], [32], [49-56] Each coil of the TPP is driven from an LCL tuned inverter




Effective Coupling Factor (k<)

Multicoil Pads with Decoupled (independent) Windings

Su1+ Su2+ Su3
\/ 2 VA VA + VA ,+ VA,

= ko2 VAL X VA,
0.5 . . . .
(==g) CP - CP <@y CP — TPP 30°
0.4 E==] CP - TPP0° /= CP - TPP60° |
5 0.3 —e—

0.2 ‘6\3%
0.1 TQ
0.0

0 50 100 150 200 250 300
Displacement (mm)

References [22]-[25],[27], [32], [49-56]

ket

kest

0.5
0.4
0.3
0.2
0.1
0.0

0.5
0.4
0.3
0.2
0.1
0.0

1 1 |
@@= CP —-CP )
[===] TPF — TFF 0° o i}

1
TPP — TPP 30°
TFPP — TPF 60° H

‘S\Q\a\

i

0 50 100 150 200 250 300

Displacement (mm)

B=&) CP - CP (ami=; TPP — CP 30°

[w==] TPP — CP 0" St TPP — CP 60° |
)——e.__,E

0 50 100 150 200 250 300

Displacement (mm)




Impact on Leakage

2.50 §
2.25 E
200 -
175 B
15 #

(="
125 §
1.00 £
0.75 pd
P —

=
0.50 =

;}?N

(a) CP-CP and (b) TPP-TPP

—
(]
[=]

&S CP-CP &< TPP — TPP 30°
5] TPP — TPP0° A== TPP — TPP 60° ]

—
=]
=]

o0
S
B

Leakage flux (uT)
[=]
=

%\
Y

0 50 100 150 200

Displacement (mm)
Fig. 13: Bje.x for CP-CP and TPP-TPP for 20kW at 150 mm air gap.

References [22]-[25],[27], [32], [49-56]

Fig.

Fig.

-

Coils1=2 -~ I
i3

|
Cutplane —
1 Coil p1
. s vz
&< CP2 — TPP2 0° Coil p2 Coilps M,x

—
s~
[==]

== CP2 - CP2

p—
=
=]

[#=F] CP2 — TPP20° A=~ CP2— TPP260° ]

Leakage flux (uT)

0 50 100 150 200
Displacement (mm)

14: Bjeax for CP-CP and CP-TPP for 20 kW at 150 mm air gap.

&8 CP2 - CP2 &= TPP2 — CP20°
100 [ TPP2 — CP20° A=~ TPP2 - CP2&0°[]

80 /4‘
e

Leakage flux (uT)
(=]
S

40
?___,..e'
20 e
0
0 50 100 150 200

Displacement (mm)

15: Bieax for CP-CP and TPP-CP for 20 kW at 150 mm air gap.



Ratings of Electronics for 20 kW

TABLE II: Distribution of real and apparent power in CP-CP and TPP-TPP systems™

CP-CP 360 V,

CP-CP 800 V,,t

TPP-TPP 0° 360 V4

(mm) | (kVA) (kW) | (kVA) (kW) (kVA) (kVA) (kW) (kW)

DlSp Sp Pp Sp Pp Sp]. SPE Spfj rp total Ppl Pp? P, 3 Pp total

100 99.74  20.83 | 4295 21.26 | 2631 596 2825 | 60.52 | 8.56 3.09 21.24

DISP S:s P:s S*; P:; S. r5-:2 Ss'j Sl- total Rl RZ RJ P*; total

100 |(53.76 20.19 | 129.15  20.19 33.98 3264 | 10231 {827 591 594 | 20.12
Summary:

Leakage reduction of 43%

Component ratings each phase of TPP, against CP:
TPP/phase: H-bridge & rectifiers %2 rating of CP, resonant components 1/3 of CP

References [22]-[25],[27], [32], [49-56]
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Multicoil Vehicle COUPLERS

* Provide wider misalignment tolerance

» Better transition for stationary to dynamic
* Reduced sensitivity to varying coupling

* Improved system efficiency

References [22]-[25] Copyright UoA: Grant Covic and Duleepa Thrimawithana, Department of Electrical, Computer, and Software Engineering (2022) 79 of 115
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R J / 2 2 T R .
W g
\ e
Quadrzjlture / / Driop DD Z
Coil \ Coils 2 Coils
o / —— S N

‘4‘:\13"&

DDQ combines DD & Circular

Improves secondary lateral tolerance

« DD captures horizontal flux at centre

« Circular captures vertical flux at centre

ﬁ 53( A \ _\ \\\‘ .

N

Sl i
e S
e SLE L My

o ~. BIPOLAR COILS

Bipolar:
Requires 25-30% less copper than DDQ
Power capture < 10% difference from DDQ

References [22]-[25]



Quadrature
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Multi-coil Secondary Comparisons

Both include two independent coils each with high Q;

« Enable similar power transfer

 Either coil can be shut down when not needed to maximise ¢

250 800
——BP-Simulated 700 ——BP-Simulated
4
200 .:‘\ —&—BP-M wred \ —&— BP-Measured
600
\\ ——DDQ-Simulated —>—DDQ-Simulated
—~ 150 ~Meastred- - 500 -
:>t_ \X ——DDQ-Measure :>t, w00 X —+—DDQ-Measured
2 2
2 100 \\ a 300
200
50 -
. . 100 .
, Circular Primary \ DD Primary M
T T T T T T T ~ 0 T T T T T T T 1
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 L A
Y-displacement Y-displacement Lapp Caop
300
800
——BP-Simulated 700 i ——BP-Simulated ’ JT Jﬂ
250 —a—BP-Measure T‘i
‘ - o 7\ —a— BP-Measured Csa (OPY) Loc Diode
200 —%—DDQ-Simulated —»—DDQ-Simulated } } g o S
‘§‘“ o —+—DDQ-Measured _;?500 1 ——DDQ-Measured bi A i} Cae
Fl < 400 Laa S = L | R
& 3 Csa —
100 \ * 300 \\EA"NN\ J% iJﬁi ;\
) \ 200 Me—
Circular Primary 100 DD Primary Ex: Combining current sourced secondaries
0 T T T T T T T ) . H
0 : \ \ \ \ ‘ when the primary current is controlled
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 p y

References [22]-[25]

X-displacement

X-displacement

BIPOLAR COILS
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M I [ ] [ ] [ ] [ ] [ ] [ ] |
i-coil Secondaries on Various Primaries
u t AUCKLAND

Polarised Primary

Non-Polarized Primary

A
(‘ /
-400
-400 300 200 -100 ] 100 200 300 400

dx(mm) dx(mm)

Power transfer zone is 3 x larger
Higher lateral parking tolerance possible
Minimises power pulsations in dynamic applications

/,ﬂ

dy(mm)

dy(mm)
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Coupling factors for mismatched primary and secondary pads
Bipolar, circular and solenoid options of identical area

=y

K gt irmg gt

(e) SP P1-5P 52 (fy SP P1-BPP 52

K cngiacerm: jrr K hngiacerm: i

(a} CP P1-CP 52 th) CP P1-BPP 52

¥ dagl sy SRre  daglarsay

w ot
e

K dasimere s inn Ecimsimereeinnd

(c) BPP P1-CP 52 (d) BPP P1-BPP 52

Kiclambaael ¥ cpicarent ()

(z) BPP P1-SP 82 (h) CP P1-SP 82
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Intermediate Couplers

References [65]-[70] Copyright UoA: Grant Covic and Duleepa Thrimawithana, Department of Electrical, Computer, and Software Engineering (2022) 84 of 115
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Magnetic pad gap

' ,.:" | Intermediate pad

Resonant Repeaters s
L/\—IE \"_-mlma pad |

(a) (b)

Fig. 1: Overview of a three-coil IPT system where the

Resonant repeaters applications intermediate is (a) placed flush on the road or (b) attached to

the vehicle

- Extending power transfer over a large gap using high quality ferrite-less coils

R
* *
o)
X

THE UNIVERSITY OF
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« Domino effect splitting can be effective for splitting and movement — e.g. robotics

« Co-planar magnetics series/parallel shows it only improves series tuned primaries by lowering the current from the

inverter

KsA

2 KRD
Poiis Sending ‘/‘\‘ ’/—\ Load

Receiving

A
) ()

Ker, Kso, Kep - weak coupling

Wi ﬁﬁ; 24

Y N 7 s D\ s 05 Ry A
E ] / \
.
X .
CD z — p— == Z .~

H + M +
H Ve 4 © ()
H - Mgq -
""""""""" e [_‘ Fig. 9. Examples of domino-resonator arrangements [60]. (a) Straight chain.

) (b) One chain splitting into two. (¢) Curved chain. (d) Two chains emerging into

one (Copyright IEEE).
Fig. 8. (a) Wireless power system with two coil-resonators, a power driving coil and a load coil, and (b) the equivalent circuits [36] (Copyright IEEE).

References [65]-[70]

Fig. 15.  Series—series-tuned systems with losses in the (a) three coil configu-
ration and (b) its two coil equivalent system.

Fig. 2. Three coil, parallel-parallel IPT system with coplanar intermediate
coupler in the primary pad. 85
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Intermediates in use for Traffic lighting:

NEW ZEALAND

Road studs with flat pick-ups — using resonant intermediate power boost in late 90’s

Installation

* Saw cut (10mm x 60mm)

* Backfill epoxy/bitumim

* Glue stud into recess

 Active node/spacer placed beneath

resonant intermediate




Coupler Improvements in Coupling?
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) Primary
Primary power power supply
supply & &
Compensation Compensation
network network
========================================= * oo Vis g
Primary Side Secondiry Side oMk
. . . _ N . - ___ 7
Fig. 2: Mutual inductance model of two-coil IPT system Primary Side Intermediate side  Secondary Side

with series tuning on the secondary
Fig. 3: Model of a three-coil IPT system with an
intermediate resonant pad and series tuned secondary

-
o

k13(simulatioh) Xk, 5(practical)
— ky3(simulation) x k,5(practical)
— kiz(simulation) X kqy(practical)

o
co

Magnetic Coupling
o
. N

Ve

Secondary
pad é -

0.2 ,
[ S U U = / Intermediate I3 o A/IIQ . ]VIISRload
st S R B 2

0.0 "“')'T" ] 7\3“““ pad ]1 ]\/[23 w]\/1223

. 1
0 50 100 150 2007250 300 350 400 - Primary VN2
z-displacement between primary and intermediate pad zp; (mm) Fx axis +y axis pad Proad = (ﬁ) I? Rioad
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Coupler Assessments of two coil versus 3 coil

Reference [70]

Fig. 9: Comparison of the apparent power when pads (a)

centred (b) offset
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o — Case] — Case?2 — Case3 3col o o= Case 1 (center) —— Case 2 (center) —— Case 3 (center)

i 200 Intermediate = 40 3-coil
= (S3) 9 with zp;
@ 150+ £ 307 = 220mm
a N Q

o 3-coil = (center)
% 100+ Secondary C{i 201

o (Sy) = T

- 50 = é 10 N

=

o . 3-coil % 0

& | ) I ! I ) Primary ~ T T T T T T T

& 0 50 100 150 200 250 300 350 400 (S1) g 0 50 100 150 200 250 300 350 400

< z-displacement between primary and secondary pad, zps (mm) z-displacement between primary and secondary pad, zps (mm)

(a) (a)

” —-Casel -—Case? -—Case3 3-coil R ---- Case 1 (offset) ---- Case 2 (offset) ---- Case 3 (offset)

> 200 7 T 7 Intermediate = 40 K v ;
& A A (S =2 s 3-coil
w150 // p % 30 A . ',:;jx' with zp;
5 S i e 3-coil b e =220mm
z 100 < Primary M 20 A g (offset)
o e (S g

z 507 3 10 -

SRR e | 3-coil ﬁ

s 0 T T T T T T T 1 Secondary % 0 T T T T T T T

& 0 50 100 150 200 250 300 350 400 52 < 0 50 100 150 200 250 300 350 400
< z-displacement between primary and secondary pad, zpg (mm) ! z-displacement between primary and secondary pad, zps (mm)

(b) (b)

Fig. 10: Comparison of the leakage fields in the worst axis

when (a) centred and (b) offset
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AVAILABLE PARKING
0.0 miles ahead.

f Static EV Charging

MAINTAIN 25MPH
Green Light Timer: .08sec

Semi-Dynamic EV Charging

Stationary & Dynamic 1l N = 3 : :
Around town: little & h Construction zone in 2 mi. ‘7 ‘-ﬂ ’a'. ; Dynamlc AY Charglng
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Static, Semi-dynamic, Smart Cities (rail, bus...), Long haul

Taxi-lanes/High Capacity Highways
« Sequentially Energised Pads
« Independently controlled, can track at > 100km/h

« Automated vehicle recognition, billing ...

Vision Challenges:
« Compatibility
« Robustness

« Longevity




Dynamic Options

« Track options

F'ick.up
Se«gment

Dlstrlbmed Supply Linits
Grid Lﬂ—ﬂ:emral Supply Unit

Fig. 1: Segment layout of a dynamic chareing system

Segment #1 Flclncup Segment #2

’ Driving
dlru:u-un
Eﬂ Inwerter #1 Inverber #2 Irverter #3

Fig. 4: Single-phase WPT track parallel to track

Segment 1 Pickup Segment #2
/ -
Drriving
direction

—_—

Inverter #1 Inverter #2 Inverter #3

Fig. 5: Single-phase WPT track parallel to track with bipolar
sturcture

Reference [34]

Inverter Gyrator Segment
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o 1°

Fig. 3: Circuit of a primary WPT supply unit
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Fl:h‘up

I/
i
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Diviviing
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Eﬂ Imwerter #1 Invertar #2 Inverter #3

Fig. 6: Dual-phase WPT track parallel to the track
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~a
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Fig. 7: Three-phase WPT track parallel to track
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- .
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_—
Inverter #1 Eﬂ Inverter #2 Eﬂ Imwartar #3

Fig. 8: Three-phase WPT track parallel to track with a star
point at the end of segment
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Distance ICNIRF

« 3 phase always better
« Linear lower cost but meander has higher tolerance and power

Segment #1 Pickup Segment #2
Cable Length Segment Cosis
Iremrter #2
Misalignment Tolerancs Transferable Power
Inverter #3
Fig. 13: Dual-phase WPT meander track —8— Linear Single-Phase
Segrnent #1  Pickup Segrment #2 e ouble Linear Siﬂge—PhﬂEE
Linear Duak-Phase
e |inear Three=Phase
e M eander Single-Phase
Fig. 14: Three-phase WPT meander track Meander DuakPhase

e [ zander Three=-Phase

Reference [34]



Lumped or Track?

! 1
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' RMode@Y200 . Circular Secondary
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KAIST Various Generations

Polarised only track and secondary has power nulls

http://olev.kaist.ac.kr/en/index.php

Pick-up

moving direction (x)

Power supply rail \/ AN

ferrite core

lateral displacement

———

Module cover
Core plates Aluminum box

(2

3

(®)

Fig. 5. Configuration of the ultra-slim S-type power supply modules

including two magnetic poles [41]. (a) Bird’s eye view for two unfolded
modules. (b) Top view of a folded module.

Reference [2],[9],[35].[36]

20-100kW
17 cm gap

Inductive strips sized for Bus

Pick-up cable
Pick-up cable
Pick-ap
core plate
(a)
Go cable Go eable

Current direction Current direction —
Power supply
core plate

Return cable

\"\,
Return cable
Curvent direction

(b)

urrent direction
(c)

Fig. 9. Conceptual scheme of the proposed coreless power supply rail
for both RPEVs and SCEVs [84]. (a) A rectangular pick-up coil for SCEVs
in accordance with the SAE J2954. (b) Proposed coreless power supply
rail. (c) Conventional power rail used for the 3G and 3G+ OLEVs.

R

THE UNIVERSITY OF

AUCKLAND

Te Whare Wananga o Tamaki Makaurau
NEW ZEALAND




Te Whare Wananga o Tamaki Makaurau
NEW ZEALAND

Bombardier Dynamic IPT

Bus: Dynamic trials lowered pads at controlled height, Stationary lowered for 100-200kW

Reference [2]



JABG INTIS

« 200kW Backbone

* 30kHz double U core Fig. 22. INTIS test center having a 25-m-long track for the IPTS of
« 30kW @ 10cm SCEVs and RPEVs [90].

Fig. 23. Test frame for a pick-up (left) and double U-type power supply
rail (right) used in the test center [90].

Fig. 24. Power supply rails and pick-up coils for SCEVs (left) and

Reference [37] RPEVs (right) developed by INTIS [91].
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Figurel3: Photograph of the transmitter coil embedded

g Fi 15: Schematic cross-sectional view of the test
in the test road ure
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Figurel4: Photograph showing the paving of the test Figurel8: Photograph of the receiver coil installed at the Figured: Schematic Of'hhfdfw'fi‘-’er coil used in this
road rear of the test EV stuev

Reference [38]
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niversity of Tokyo
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Search mode WPTmode  Search mode

Threshold level Taa

Time

Fig. 8. Concept of sensorless vehicle detection system.



GEM Vehicle — g/ .

80V PbAcid
L?IO V Carbon
tracapacitor
220 Vac 90-270V_  30Sx1Px650F T T
Commercial
K‘I K2 K3

AkA

Photocell
Sequencing
Commands

...... etllng
0o | ==
- Radic Modem

Lithium Gapaqtor LiC
2300 F 3.5V x12

Figure 11. Functional diagram of the ORNL in-motion experimental facility.

2206kHz  + 2226 kHz =
80 HZI* %]D%/ ﬁjﬂ?/ In Vehicle Parts
%w—v Coils Rectifier Battery

)(furmer
7 I
240V AC el
! 95% ' 90% I
Figure 8. ORNL's EVWPT experimental facility. L _jI
: System Efficiency Target > 85%

Figure 3. Functional diagram of laboratory WPT.

Power Pulses followed by Nulls
Overcome using two offset coils and ultra capacitors but reduces potential capture.

Reference [43]



TUG Bulgaria (FP7 fast in Charge)

Charging

station
pmtoilat L

« 30kW system
« Primary has 4cm think cover

« Dynamic at 15-20km/hr

Fig. 1. Charging infrastructure — a) static; b) dynamic.

AL covers
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Fig. 4. Dynamic charging infrastructure

Fig. 5. Real tests — a) static and b) dynamic

Reference [44]
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« (LCC) =LCL 2.34kW power transfer

« Studying switch on and cross transfer of power

0 10 20 30 40 50 60 70 80
x(cm)

Fig. 14. Measured P, at difterent position within a dynamic WPT unit.

Inverter 1 Dynamic

WPT unit

Onboard
rectifier

sue| SurSieyd ssaorm SruRuA .,

Fig. 2. Configuration of a general wireless power transfer system for
dynamic wireless EV charging. Fig. 12. Photograph of our dynamic EV charging-oriented WPT
prototype.

Reference [45]



-
D THE UNIVERSITY OF
S Su AUCKLAND

Te Whare Wananga o Tamaki Makaus
NEW ZEALAND

One inverter driving multiple DD Primaries to a DDQ Secondary Ls mgﬁ%@%@@@ Boia

IR IR

A closely coupled primary decoupler is used to shut off unused primaries gan conean aig fan SAAGHA e

« S, used to vary reflected load to regulate Ip W?@@
Lot ¢ J o Lsg
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Lsz oooooo %Qg Lep

",III||"
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i 3 Mo & ()
e
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Fig. 8. Primary coil current regulation circuit.
Fig. 4. Multi-LCC networks for the dynamic WPT system.

Fig. 6. Coils coupling diagram. (a) Reference point I. (b) Reference point
1. (c) Reference point lll. (d) Reference point IV. (e) Reference point V.

References [46,47]



Aluminum shielding beam

Aluminumshield AR
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Politecnico di Torino

Q@ CwDCZ
@ On road DC/HF

Receivingcail
Ferrite | cores

QO Control and Power room

Lexan plates

« FABRIC CWD: 50 TX’s:
« Each: 1.5m x 50cm, spaced 50cm.
e 630Vdc stabilised backbone

Fig. 10: Map of the Italian test site of eCo-FEV

DC/DC HFIDC

Energy power transfer djode
g gulat Comp. Receiver

= AV |

Compensation I Compensation

capacitor capacitor X50
DCHF DC/HF
MV distribution Active 3-phase H-bridge H-bridge
line AC/DC converter converter
converter

DC distribution line

]
| Insulation
i transformer
' Filter
PCC capacitor
Active
smoothing

Fig. 9: Electrical infrastructure for the dynamic IPT proposed
by the team of the Politecnico di Torino.

Fig. 12: Back of the vehicle during the CWD operation. Under
the vehicle plane is visible the receiving structure mounted.

Reference [48]



UoA Roadway

/ Vehicle lane // // Vehicle lane

Pad H Pad T Pad H PadHPad (5 Pad—) A Pad pad% Pad [ PadHPad (HPad | Pad5 (4 Pad i PadgPad | =

IPT Track IPT Track IPT Track IPT Track

Power Power
Power || Power | Supply || Supply
Supply || Supply | cabinet || cabinet

cabinet cabinet

100m

1 Sequentially Energised Pads under the Vehicle
Coupled power to each independently controlled pad

1 No DC or mains under roadway

O

References [8],[27]-[31]



UoA Prototype: Slow moving Taxi-Rank System

. Evaluation of various systems

. 10kW/vehicle system

. Energised only under vehicle

. 20/50kW systems under development

aki Makaurau
NEW ZEALAND

Multicoil Bipolar Secondary
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Multicoil lowers by switching off a coil, raising efﬂuency
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Inverter turn on at slow speeds e
R TV — AUCKLAND

« Slow vehicle movement (~0.8m/s) speed synchronised
« Ifnot phase synchronised energy transferred between base pads

- If free resonance > set level in base pad then turn on.
 Turn off when I 4, is low

10085 2 100485 100487 10047

Source Cursors Units

Slow vehicle movement 5.5 kW, Voltage = 300,
Output Current =17.8 A



Qualcomm Halo (WiTricty) DEVC

' . \

-

QUALCOMM HALO

Dynamic Electric Vehicle Charging

No DC or mains under road
. Sequentially Energised Multicoil in road
. 2 x DD 10kW pads (20kW) vehicle
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100 m, 20 kW Dynamic Track
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Sequential Energisation along the track




In-Road Research Challenges
SHECHRND

« Compatibility
« traffic mixes (different heights)
- Road construction, (most not concrete and larger movement)
- Varying energy demands,
 Flexible grid supply

- Robustness and reliability

- Impact of road construction




0
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« Resonant WPT
« Imagined 1890s
« Rediscovered in 1970-80s
« Commercially practical mid-late 90s in niche markets

- Stationary Charging
- Single coil options accepted by OEMSs for first application
« Multi-coil topologies promising for high power, wide tolerance
 Ferrite-less designs under investigation for robustness

- Moving applications
« Industrial track systems are well established, but transportation options being evaluated
« Greater freedom requires multi-coil designs on primary or secondary
« Vehicular systems require robust design considering LD and HD
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DD-DD Ansys Stationary Charging Example

Objectives of matched pads analysis:

Set the ferrite Al and copper regions
Set excitation to 25A 85kHz RMS
Evaluate when pads aligned: L1, 12, Mand R

Use rectangle cut plans to evaluate

Bin the core
B Leakage field at 800mm

Copyright UoA: Grant Covic and Duleepa Thrimawithana, Department of Electrical, Computer, and Software Engineering (2022)
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Questions
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2005 and his Ph.D. in power electronics in 2009 from The University of Auckland, Auckland, New Zealand.
From 2005 to 2008, he worked in collaboration with Tru- Test Ltd. in Auckland as a Research Engineer in the
areas of power converters and high-voltage pulse generator design. He joined the Department of Electrical
and Computer Engineering at The University of Auckland in 2009 where he currently works as a Senior
Lecturer. He has co-authored over 130 international journal and conference publications and holds 18 patent
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Grant Covic (S’88-M’89-SM’04) is a full professor with the Electrical, Computer, and Software Engineering
Department at The University of Auckland (UoA). He began working on inductive power transfer in the
mid 90’s, and by early 2000’s was jointly leading a team focused on AGV and EV charging solutions. He
has published more than 200 international refereed papers in this field, worked with over 30 PhDs and
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heads inductive power research at the UoA, is directing a government funded research program on
stationary and dynamic wireless charging of EVs within the road, while also co-leading the
interoperability sub-team within the SAE J2954 wireless charging standard for EVs.
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